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Using ideas of Gru� nwald, Marcinkiewicz, and Ve� rtesi concerning the divergence
of interpolation processes, a counterexample is constructed which establishes that a
Jackson estimate for the best approximation by algebraic polynomials given by
Ditzian and Totik is sharp in a pointwise sense everywhere. � 1996 Academic

Press, Inc.

1. INTRODUCTION

Let C[&1, 1] be the space of functions f, continuous on the interval
[&1, 1], endowed with the uniform norm & f & :=max&1�x�1 | f (x)|, and
for n # N (set of natural numbers) let En( f ; x) be the best approximation to
f from the set Pn of algebraic polynomials of degree at most n, thus

&En( f ; x)& f (x)&=min
p # Pn

&p(x)& f (x)&.

Following Z. Ditzian and V. Totik [5] we define the weighted modulus of
smoothness of order r # N by means of

|r
.( f ; t) := sup

0�h�t
&2r

h.(x) f (x)&, .(x) :=(1&x2)1�2,

2r
h f (x) :={ :

r

k=0

(&1)k \ r
k+ f (x+rh�2&kh), if |x\rh�2|�1,

0, otherwise.

In these terms one has for f # C[&1, 1] (see [5, p. 79])

|En( f ; x)& f (x)|�C|r
. \ f ;

1
n+ , x # [&1, 1], n>r, (1.1)
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where C=C(r) depends on r only. To investigate the sharpness of this
Jackson estimate, let us consider a function |r(t) with the following
properties (cf. [7]):

0=|r(0)<|r(t)�|r(T ) if 0<t�T,

|r(t) is continuous for t�0, (1.2)

T r�|r(T )�tr�|r(t) if T�t>0, (1.3)

lim
t � 0+

tr�|r(t)=0. (1.4)

From (1.1) it immediately follows that

|r
.( f ; t)=O(|r(t)) O |En( f ; x)& f (x)|=O \|r \1

n++ .

This is best possible in the sense that, under appropriate conditions, even
a converse result holds true (see [2, p. 265] for the case |r(t)=t:,
0<:<r, see also [4]). It is also sharp in the following sense.

Theorem. For each |r(t) satisfying (1.2�4) there exists a counter-
example f # C[&1, 1] such that |r

.( f ; t)=O(|r(t)) and

lim sup
n � �

|En( f ; x)& f (x)|
|r(1�n)

�c>0 (1.5)

simultaneously for each x # [&1, 1].

A proof of this assertion will be given in Section 3, whereas two Lem-
mas, stated and proved in the next section, will pave the way. Let us point
out that in the above situation a counterexample f # C[&1, 1] satisfying
|r

.( f ; t)=O(|r(t)) and

lim sup
n � �

&En( f ; x)& f (x)&�|r(1�n)�c>0

can be obtained by means of an uniform boundedness principle with rates
([3]) and the equivalence of |r

. with a weighted K-functional (see [2,
p. 187 ff.]). To examine the behaviour of the pointwise (rather than norm)
error |En( f ; x)& f (x)|, some ideas of [6; 7] turn out to be useful.
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2. AUXILIARY RESULTS

Let Tn denote the Chebyshev polynomial of degree n, thus Tn(x)=
cos(n arccos x) for x # [&1, 1]. In order to prove the theorem we
investigate certain linear combinations of these polynomials.

Lemma 1. For 0<8+�*, n # N let g # C[&1, 1] be defined by

g(x) :=*Tn+1(x)++T2(n+1)(x), x # [&1, 1].

For m=n+1, 2(n+1) consider the sets Bm :=[x # [&1, 1]: |Tm(x)|�1�2].
Then

|En(g; x)&g(x)|�
*
4

for x # Bn+1 , (2.1)

|E2n+1(g; x)&g(x)|�
+
2

for x # B2(n+1) , (2.2)

Bn+1 _ B2(n+1)=[&1, 1]. (2.3)

Proof. With x=cos %, % # (0, ?), one easily calculates

g$(x)=(n+1) *
sin (n+1) %

sin %
+2(n+1) +

sin 2(n+1) %
sin %

=(n+1)
sin (n+1) %

sin %
[*+4+ cos(n+1) %].

Since *+4+ cos(n+1) %�*&4+>0, one obtains

g$(x)>0 � % # .
n

k=0
k even

\ k?
n+1

,
(k+1) ?

n+1 +
� x # .

n

k=0
k even

(' (n+1)
k+1 , ' (n+1)

k ),

g$(x)<0 � % # .
n

k=1
k odd

\ k?
n+1

,
(k+1) ?

n+1 +
� x # .

n

k=1
k odd

(' (n+1)
k+1 , ' (n+1)

k ),
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where ' (n+1)
k :=cos (k?�(n+1)), k=0, 1, ..., n+1. Therefore the function

g(x)&+ alternately attains the maximum * (at x=' (n+1)
k , k even) and the

minimum &* (at x=' (n+1)
k , k odd); and there are no further extrema in

[&1, 1]. That is, ' (n+1)
n+1 <' (n+1)

n < } } } <' (n+1)
0 form an alternating set for

g(x)&+. In this situation the Chebyshev theorem ([2, p. 74]) says that +
is the best approximation to g out of Pn , whence

|En(g; x)&g(x)|=|+&g(x)|=|+&*Tn+1(x)&+T2(n+1)(x)|

�* |Tn+1(x)|&2+�* \ |Tn+1(x)|&
1
4+�

*
4

for x # Bn+1. Thus (2.1) is established.
Another application of Chebyshev's theorem delivers E2n+1(+T2(n+1) ; x)

#0. Therefore by virtue of E2n+1( f +p)=E2n+1( f )+p for all
f # C[&1, 1], p # P2n+1 (see [1, p. 83])

|E2n+1(g; x)&g(x)|=|E2n+1(+T2(n+1) ; x)&+T2(n+1)(x)|=+ |T2(n+1)(x)|,

and (2.2) again follows from the definition of B2(n+1) .
If x=cos % � Bn+1 , then |cos(n+1) %|<1�2. In view of cos 2�=

2cos2 �&1 it follows that |T2(n+1)(x)|=|cos 2(n+1) %|�1�2, hence
x # B2(n+1) . This proves (2.3). K

The following is merely a reformulation of an inequality due to Freud
(see [2, p. 77]).

Lemma 2. For each g # C[&1, 1] and n # N exists a constant
K=K( g, n)>1 such that for every h # C[&1, 1]

|En(h; x)&h(x)|�|En(g; x)&g(x)|&K &h&g&, x # [&1, 1].

Proof. According to the inequality mentioned there is a constant K� >0
such that &Enh&Eng&�K� &h&g& for all h # C[&1, 1]. With K :=K� +1
one obtains for x # [&1, 1]

|En(h; x)&h(x)|�|En(g; x)&g(x)|&|En(h; x)&En(g; x)|&|h(x)&g(x)|

�|En(g; x)&g(x)|&K &h&g&. K

3. PROOF OF THE THEOREM

For each n # N consider the function

gn(x) :=|r \1
n+ Tn+1(x)+

1
8

|r \ 1
2n+1+ T2(n+1)(x) # C[&1, 1].
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According to Lemma 2 there are constants Kn :=K(gn , n)+K(gn , 2n+1)>2
such that for every h # C[&1, 1], x # [&1, 1], and & # [n, 2n+1]

|E&(h; x)&h(x)|�|E&(gn ; x)&gn(x)|&Kn&h&gn&. (3.1)

Starting with an arbitrary n1�2r, one may choose a subsequence
(nk)�

k=1/N such that for k�1:

nk+1>2(nk+1), (3.2)

|r \ 1
nk+1+�

1
64Knk

|r \ 1
2nk+1+ , (3.3)

nr
k+1|r \ 1

nk+1+� :
k

j=1

nr
j |r \ 1

nj+ . (3.4)

By (1.2) and (3.3) one obtains |r(1�nj+1)�|r(1�(2nj+1))�128�
|r(1�nj)�128, hence

:
�

j=k _|r \ 1
nj++

1
8

|r \ 1
2nj+1+&�

9
8

:
�

j=k

|r \ 1
nj+�2|r \ 1

nk+ . (3.5)

Since &Tn&=1 for all n # N, this implies that f (x) :=��
j=1 gnj (x) is well-

defined in C[&1, 1]. To estimate |r
.( f ; t) we first show the following

Jackson�Bernstein-type inequality:

|r
.(gn ; t)�Mr|r \1

n+ min[1, trnr], 0�t�
1
2r

, n # N. (3.6)

Indeed, in view of the definition of the modulus of smoothness

|r
.(gn ; t)�2r &gn &�2r \|r \1

n++
1
8

|r \ 1
2n+1++�2r+1|r \1

n+ .

Moreover, using an estimate for the weighted modulus ([2, p. 187]) and a
Bernstein-type inequality ([5, p. 107]) one has for t�1�2r

|r
.(gn ; t)�Cr tr &(1&x2)r�2 g (r)

n (x)&

� Cr
t

tr(2(n+1))r &gn(x)&� Cr
t

22r+1trnr|r \1
n+ ,

and (3.6) is proven.
Now we fix 0<t<1�n1 . Then there exists k # N with 1�nk+1�t<1�nk ,

and by (1.2�3, 3.4�6) it follows that
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|r
.( f ; t)�\ :

k

j=1

+ :
�

j=k+1
+ |r

.(gnj ; t)

�Mrtr :
k

j=1

nr
j |r \1

nj++Mr :
�

j=k+1

|r \ 1
nj+

�2Mrtrnr
k|r \ 1

nk++2Mr |r \ 1
nk+1+�4Mr|r(t),

whence |r
.( f ; t)=O(|r(t)).

To obtain (1.5) we shall prove the following: For every x # [&1, 1] there
is a subsequence (&k)�

k=1/N such that

|E&k( f ; x)& f (x)|�
1
32

|r \ 1
&k+ (3.7)

for all k # N. To this end, we fix x* # [&1, 1] and, as in Lemma 1, define
Bn :=[x # [&1, 1] : |Tn(x)|�1�2], n # N. Then for each k # N we choose
the index &k as follows: If x* # Bnk+1 let &k :=nk , otherwise let
&k :=2nk+1. By (3.2) one has &1<&2< } } } and gnj # P2(nj+1)/Pnk/P&k for
1�j�k&1. Setting f =(�k&1

j=1 +��
j=k) gnj=: p+h and observing that

p # P&k and thus E&k( p+h)=p+E&k(h) (see [1, p. 83]) one arrives at (cf.
(3.1))

|E&k( f ; x*)& f (x*)|=|E&k(h; x*)&h(x*)|

�|E&k(gnk ; x*)&gnk(x*)|&Knk &h&gnk& . (3.8)

By (1.2, 3.3, 3.5) one has

&h&gnk&� :
�

j=k+1
_|r \ 1

nj++
1
8

|r \ 1
2nj+1+&

�2|r \ 1
nk+1+�

1
32Knk

|r \ 1
2nk+1+�

1
32Knk

|r \ 1
&k+ . (3.9)

Consider the case &k=nk , i.e., x* # Bnk+1. Using Lemma 1 for n=&k ,
*=|r(1�nk), +=|r(1�(2nk+1))�8, thus g=gnk , one obtains

|E&k(gnk ; x*)&gnk(x*)|�
1
4

|r \ 1
nk+=

1
4

|r \ 1
&k+ . (3.10)
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If &k=2nk+1, i.e., x* � Bnk+1 , then one has in view of (2.3) that
x* # B2(nk+1) , and another application of Lemma 1 yields

|E&k(gnk ; x*)&gnk(x*)|�
1

16
|r \ 1

2nk+1+=
1

16
|r \ 1

&k+ . (3.11)

Summarizing (3.8�11) one obtains (3.7) in any case, and therefore the
proof is complete.
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